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Abstract The hydrogen fuel seems to be a good candidate to replace the energy
obtained from some fossil fuels. Therefore this work explains the process of obtaining
a two-step reduced chemical kinetic mechanism for the hydrogen combustion. The
development of a reduced mechanism consists in eliminating reactions that produce
negligible influence on the combustion process. Moreover, for this mechanism, we
obtain an analytical-numerical solution for a turbulent jet diffusion flame. To quantify
the intermediate species, the mixture fraction is decomposed into three parts, each part
directly related to the mass fraction of a species. The governing equations are discret-
ized using the second order finite-difference approach and are integrated in time using
the second order simplified three-step Runge-Kutta scheme. Obtained results compare
favorably with data in the literature for a 50/50 % volume H2 − N2 jet diffusion flame.
The main advantage of this strategy is the decrease of the work needed to solve the
system of governing equations, by one order of magnitude for the hydrogen.
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1 Introduction

Hydrogen can be obtained from fossil fuels or conveniently from renewable resources
as a biofuel. Biofuels refer to liquid or gaseous fuels predominantly produced from bio-
mass. In the context of reducing CO2 emissions from power production, the hydrogen
has recently drawn increased attention as a clean fuel [1]. Although it does not produce
harmful emissions such as CO2, CO, soot and unburnt hydrocarbons, the high adiabatic
temperatures of H2/air mixture originate large amounts of thermal NOx in the flame.
The hydrogen is an important intermediate species in the oxidation of hydrocarbons
as well as of oxygenated fuels. The elementary kinetics of H, O, OH, HO2, H2 and
H2 O2 determine the composition of the radical pool in hydrocarbon and oxygenated
fuels reaction systems [2].

The ignition process of hydrogen with oxygen changes dramatically depending
on the initial gas temperature and on the mixture fraction. Hydrogen combustion is
strongly affected by molecular diffusion processes and has short ignition times, high
laminar flame speed, and a wide flammability range. In a nonhomogeneous system,
there are different reduced mechanisms appropriate for different zones, depending on
the temperature and on the species concentrations [3].

There is an increasing interest in the study of hydrogen diffusion flames, since its
kinetics is very well understood and because of its key role in hydrocarbon combus-
tion. Reduced kinetics mechanisms for hydrogen combustion have been developed
by several researchers, e. g., Peters and Rogg [4], Kreutz and Law [5], Saxena and
Williams [6], Ströhle and Myhrvold [1], Lorenzzetti et al. [7], among others. The
basics of a reduced mechanism is the elimination of reactions that produce negligible
influence on the overall combustion process [1]. According to Peters and Rogg [4],
the two-step mechanisms are appropriate for hydrogen-air premixed and diluted and
non-diluted diffusion flames.

The mixture fraction is a variable frequently used to describe nonpremixed flames.
The mixture fraction measures the mixture of reagents and is mainly related to the
large scale motions of the flow. However, with a single value of the mixture fraction it
is not possible to account for products of incomplete combustion, or even the mixing
of unburned fuel and oxygen. Instead, we need to decompose the mixture fraction into
constitutive parts that represent the products of the different reactions [8]. The number
of components depends on the complexity of the phenomenon.

In this work, we show the steps to develop a two-step reduced kinetic mechanism
for hydrogen, and an analytical-numerical solution for a hydrogen jet diffusion flame,
based on the decomposition of the mixture fraction. The set of governing equations is
presented in the Favre averaging form. To validate the mechanism and the analytical
procedure the numerical results for a H2-N2 jet diffusion flame are compared with
data from the literature.
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2 Reduced kinetic mechanism for the hydrogen

The main difficulty of the use of detailed kinetic mechanisms to analyze flames is that
a conservation equation must be solved for each species. Therefore, it is desirable to
use simplified kinetic mechanisms that describe the reaction system in terms of few
species, obtained using the assumptions of steady-state and partial equilibrium, for
example. Then, such mechanisms are valid for certain conditions, i. e., they produce
good results for certain ranges of temperature and composition of the mixture [9].

For a homogeneous system, the steady-state assumption is valid for those interme-
diate species that are produced by slow reactions and consumed by fast reactions, so
that their concentrations remain small. The partial equilibrium hypothesis is justified
when the rate coefficients of forward and backward reactions are much larger than all
the other rate coefficients of the reactions of the mechanism [10].

Consider the basic hydrogen mechanism shown in the Table 1 (with rate coeffi-
cients from Mehl et al. [11]). To obtain a reduced kinetic mechanism of two-step for
the hydrogen, initially it is estimated the magnitude of the rate coefficients k using the
modified equation of Arrhenius

k = AT n exp

(
− Ea

RT

)
(1)

where A is the frequency factor, T the temperature, n the temperature exponent, Ea
the activation energy, and R the gas constant. With this equation it is defined the main
chain of the process: H2–H2 O . For high temperatures (T > 1, 800 K ) and p = 1 bar ,
the reaction rates of some forward and backward reactions are so high, that the partial

Table 1 Hydrogen mechanism
rate coefficients (units are
mol, cm3, s, K and cal/mol)

Reaction A n Ea

1f H + O2 = O + O H 3.55E+15 −0.406 1.66E+04

1b O + O H = H + O2 1.03E+13 −0.015 −1.33E+02

2f O + H2 = H + O H 5.08E+04 2.670 6.29E+03

2b H + O H = O + H2 2.64E+04 2.651 4.88E+03

3f O H + H2 = H + H2 O 2.16E+08 1.510 3.43E+03

3b H + H2 O = O H + H2 2.29E+09 1.404 1.83E+04

4f O H + O H = O + H2 O 1.45E+05 2.107 −2.90E+03

4b O + H2 O = O H + O H 2.97E+06 2.020 1.34E+04

5f H + O2 + M = H O2 + M 1.48E+12 0.600 0.00E+00

5b H O2 + M = H + O2 + M 3.09E+12 0.528 4.89E+04

6f H O2 + H = O H + O H 7.08E+13 0.000 2.95E+02

6b O H + O H = H O2 + H 2.03E+10 0.720 3.68E+04

7f H O2 + H = H2 + O2 1.66E+13 0.000 8.23E+02

7b H2 + O2 = H O2 + H 3.17E+12 0.348 5.55E+04

8f H O2 + O H = H2 O + O2 1.97E+10 0.962 −3.28E+02

8b H2 O + O2 = H O2 + O H 3.99E+10 1.204 6.93E+04
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equilibrium can be considered for the reactions 1, 2 and 3 (see the Table 1). In this
case, each reaction is in equilibrium and, therefore, the reaction rates of forward and
backward reactions are similar, i. e.,

k1 f [H ][O2] ∼ k1b[O][OH] (2)

k2 f [O][H2] ∼ k2b[H ][OH] (3)

k3 f [OH][H2] ∼ k3b[H ][H2 O] (4)

resulting in

[H ] =
(

k1 f k2 f k2
3 f [O2][H2]3

k1bk2bk2
3b[H2 O]2

) 1
2

(5)

[O] = k1 f k3 f [O2][H2]
k1bk3b[H2 O] (6)

[O H ] =
(

k1 f k2 f [O2][H2]
k1bk2b

) 1
2

(7)

After applying the steady-state hypothesis for the species H O2, O H and O , it is
obtained the following two-step mechanism for the hydrogen

I 3H2 + O2 → 2H2 O + 2H (8)

I I H + H + M → H2 + M (9)

This mechanism can be justified by an asymptotic analysis, which is a method of
describing limiting behavior. It employs the concept of a limit to identify reactions,
critical conditions and other important parameters in nonlinear natural phenomena.
Here it consists in assuming the steady-state hypothesis for certain species, obtaining
algebraic equations among the reaction rates. Then, the global mechanism is defined
by the stoichiometry of the balance equations.

For the set of elementary reactions shown in the Table 1, the balance equations for
the hydrogen are written as

wH2 = −w2 − w3 + w7 (10)

wO2 = −w1 − w5 + w7 + w8 (11)

wH2 O = w3 + w4 + w8 (12)

wH = −w1 + w2 + w3 − w5 − w6 − w7 (13)

wO = w1 − w2 + w4 (14)

wO H = w1 + w2 − w3 − 2w4 + 2w6 − w8 (15)

wH O2 = w5 − w6 − w7 − w8 (16)

The plus sign refers to species that appear on the right side of an elementary reac-
tion, while the minus sign refers to species on the left. For example, in the reaction 1f:

123



560 J Math Chem (2013) 51:556–568

H + O2 = O + O H, wH = −w1 f and wO H = +w1 f , repeating this procedure for
all other species and reactions of the mechanism.

Note that

w1 = w1 f − w1b (17)

w2 = w2 f − w2b (18)

w3 = w3 f − w3b (19)

w4 = w4 f − w4b (20)

w5 = w5 f − w5b (21)

w6 = w6 f − w6b (22)

w7 = w7 f − w7b (23)

w8 = w8 f − w8b (24)

It is assumed that the species H O2, O H and O are in steady-state and, therefore,
wi is zero for these species, leading to three algebraic equations among the reaction
rates wk . Eliminating the fastest consumption rates, i. e., w2 in the equation for the
O, w7 for H O2 and w8 for O H , it results in

w2 = w1 + w4 (25)

w7 = −2w1 + w3 + w4 + w5 − 3w6 (26)

w8 = 2w1 − w3 − w4 + 2w6 (27)

Making the rates wI and wI I equal to

wI = w1 + w6 (28)

wI I = w5 (29)

one obtains the following linear combinations

wH2 = −3w1 + w5 − 3w6 (30)

wO2 = −w1 − w6 (31)

wH2 O = 2w1 + 2w6 (32)

wH = 2w1 − 2w5 + 2w6 (33)

Therefore, the stoichiometry of these reactions corresponds to the mechanism given
by Eqs. (8) and (9), with the corresponding reaction rates

wI = w1 + w6

= k1 f [H ][O2] − k1b[O][O H ] + k6 f [H O2][H ] − k6b[O H ]2 (34)

wI I = w5

= k5 f [H ][O2][M] − k5b[H O2][M] (35)
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The assumptions of steady-state and partial equilibrium help to simplify the sys-
tem of kinetic equations, and to minimize the computational time required for their
solution, but these hypotheses are not applied in regimes of low temperatures. These
hypotheses can be used since the error between the simplified and complete solution
is reduced to an acceptable level [12].

3 Mathematical formulation and solution procedure for jet diffusion flame

Consider a hydrogen jet diffusion flame in which the fuel, delivered from a round noz-
zle, with diameter d and exit velocity u0, mixes with the surrounding air by convection
and diffusion, as shown in the Fig. 1. The jet flame is chosen because it represents the

Fig. 1 Jet diffusion flame sketch
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class of nonpremixed flames. Here, the effects of buoyancy and pressure gradients in
the flame were neglected.

This problem is governed by the equations of continuity, momentum, mass fraction
of the species i , mixture fraction and temperature. Favre filtering is used to write them
conveniently.

In a homogeneous system, where a fuel stream is mixed with an oxidizer stream,
the mixture fraction can be defined as the ratio between the mass fraction of the fuel,
in the unburnt mixture, and the mass fraction of fuel, in the original fuel stream,
Z = YF,u/YF,1, and is related with the fuel and the oxidizer mass fractions through
the relation

Z = νYF − YO2 + YO2,2

νYF,1 + YO2,2
(36)

where ν = (νO2 WO2)/(νF WF ), YO2,2 is the mass fraction of O2 in the oxidizer stream,
and Wi the molecular weight of the species i .

When solving the analytical problem for the two-step mechanism, corresponding
to the Eqs. (8) and (9), the mixture fraction needs to be decomposed into parts that
represent the intermediate species.

To obtain an expression for the mixture fraction, a linear combination of formation
rates of the species H2, H and H2 O is made as

2wH2 + 2wH2 O + wH = 0 (37)

which can also be written as

2
dYH2

WH2

+ 2
dYH2 O

WH2 O
+ dYH

WH
= 0 (38)

Integrating this equation from time zero (unburned mixture) to a given time t , one
obtains the expression

2
YH2 − YH2,u

WH2

+ 2
YH2 O − YH2 O,u

WH2 O
+ YH − YH,u

WH
= 0 (39)

Using the equation Z = YF,u/YF,1, and considering that the concentrations of H
and H2 O at the beginning of the combustion are zero, i. e., YH2 O,u = YH,u = 0, the
mixture fraction turns

Z̃ =
(

YH2 + WH2

WH2 O
YH2 O + YH

)
1

YH2,1
(40)

Thus, the mixture fraction is composed by three parts

Z̃1 = YH2

YH2,1
(41)
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Z̃2 = WH2

WH2 O

YH2 O

YH2,1
(42)

Z̃3 = YH

YH2,1
(43)

Consider the equation for the mass fraction of the species i and for the temperature
(i, j = 1, 2, 3)

∂(ρỸi )

∂t
+ ∂(ρũ j Ỹi )

∂x j
= ∂

∂x j

(
μt

Re Sc

∂Ỹi

∂x j

)
+ ˜̇mi (44)

∂(ρT̃ )

∂t
+ ∂(ρũ j T̃ )

∂x j
= ∂

∂x j

(
μt

Re Pr

∂ T̃

∂x j

)
+ ˜̇mT (45)

where ρ is the density, t the time, x j the spacial coordinate, u j the velocity vector,
μt the turbulent viscosity (Smagorinsky model), T the temperature, Re the Reynolds
number, Sc the Schmidt number, Pr the Prandlt number, ṁi the production rate of the
species i , and ṁT the heat release due to chemical reactions. It results the following
three equations for the mass fraction components

∂(ρ Z̃1)

∂t
+ ∂(ρũ j Z̃1)

∂x j
= ∂

∂x j

(
μt

Re Sc

∂ Z̃1

∂x j

)
+ WH2

YH2,1

(˜̇wH2,I + ˜̇wH2,I I
)

(46)

∂(ρ Z̃2)

∂t
+ ∂(ρũ j Z̃2)

∂x j
= ∂

∂x j

(
μt

Re Sc

∂ Z̃2

∂x j

)
− 2

3

WH2

YH2,1

˜̇wH2,I (47)

∂(ρ Z̃3)

∂t
+ ∂(ρũ j Z̃3)

∂x j
= ∂

∂x j

(
μt

Re Sc

∂ Z̃3

∂x j

)
− WH2

YH2,1

(
1

3
˜̇wH2,I + ˜̇wH2,I I

)
(48)

where ˜̇wH2,I and ˜̇wH2,I I correspond to the hydrogen production rate of reactions I
and I I of the two-step mechanism shown in (8) and (9), respectively. After adding the
Eqs. (46)–(48), the source term must cancel, and it results an unique equation for the
mixture fraction.

The set of governing Eqs. (46–48) with their corresponding boundary conditions
is solved numerically. A forward finite difference scheme for the time derivative is
employed,

(
∂ f

∂t

)
(i, j,k,t+1)

∼ f(i, j,k,t+1) − f(i, j,k,t)

Δt
(49)

and a central finite difference scheme for spatial derivatives of first-order is adopted

(
∂ f

∂x

)
(i, j,k,t)

∼ f(i+1, j,k,t) − f(i−1, j,k,t)

2Δx
(50)

(
∂ f

∂y

)
(i, j,k,t)

∼ f(i, j+1,k,t) − f(i, j−1,k,t)

2Δy
(51)
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(
∂ f

∂z

)
(i, j,k,t)

∼ f(i, j,k+1,t) − f(i, j,k−1,t)

2Δz
(52)

The second-order spatial derivatives are approximated using the central finite dif-
ference scheme

(
∂2 f

∂x2

)
(i, j,k,t)

∼ f(i+1, j,k,t) − 2 f(i, j,k,t) + f(i−1, j,k,t)

(Δx)2 (53)

(
∂2 f

∂y2

)
(i, j,k,t)

∼ f(i, j+1,k,t) − 2 f(i, j,k,t) + f(i, j−1,k,t)

(Δy)2 (54)

(
∂2 f

∂z2

)
(i, j,k,t)

∼ f(i, j,k+1,t) − 2 f(i, j,k,t) + f(i, j,k−1,t)

(Δz)2 (55)

Fig. 2 Mixture fraction Z and its components Z1, Z2 and Z3 along the burner centerline
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Fig. 3 Comparison of the experimental values (T-exp) [13] with the analytical-numerical values (T-anum)
for the temperature mean value along the flame axis

The numerical simulations were realized using the simplified Runge-Kutta multi-
step scheme. This scheme is given by

−→
W (0)

i, j,k = −→
W (n)

i, j,k (56)
−→
W (r)

i, j,k = −→
W (0)

i, j,k − αrΔt
−→
R (r−1)

i, j,k (57)
−→
W (n+1)

i, j,k = −→
W (3)

i, j,k (58)

where
−→
W i, j,k = {Z̃1, Z̃2, Z̃3, Ỹi , T̃ }T , r = 1, 2, 3 the number of stages, and the

coefficients αr are given by α1 = 1/2, α2 = 1/2 and α3 = 1. For low Mach-
numbers the Courant Friedrich-Lewy (C F L) is the convergence condition, resulting
in Δt = C F L

Vi, j,k

λi +λ j +λk , where λi is the spectral ratio of the Jacobian matrix related to
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Fig. 4 Comparison of the experimental values (YH2O-exp) [13] with the analytical-numerical values
(YH2O-anum) for the water vapor mean value along the flame axis

the direction
−→
i , and similarly for λ in other directions; the C F L number is of order

2 for the Runge-Kutta of three stages.

4 Analytical/numerical results

The 50–50 % volume H2/N2 flame [13] is chosen to obtain the results for the mixture
fraction, as shown in the Fig. 2. The Z̃1 = YH2/YH2,1 decreases with the increase of
the ratio X/D, while the Z̃2 = (WH2 YH2 O)/(WH2 OYH2,1) starts as zero and increases
in the reaction zone. The same behavior is observed for Z̃3 = YH /YH2,1, but the
magnitude of H is smaller. Due to the advection and diffusion the water vapor value
remains important as X/D increases, but its magnitude is not so high far downstream
from the reaction zone, due to the increase of the flame jet diameter.
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Figures 3 and 4 show the nondimensional temperature and the water vapor profiles,
respectively. The temperature profile is in reasonable agreement with the experiment.
It rises downstream the jet entrance in the rich part of the flame and decreases by
expansion in the lean flame region. It is overpredicted in the rich part of the flame due
to the radiation, which is not considered in the present model. The H2 O mass fraction
compares reasonably with the experiment too; the jet flame spreading is adequately
captured.

In these figures, “exp” means the values of the experiment and “anum” the ana-
lytical-numerical values. The relations for T and YH2 O as a function of the mixture
fraction can also be easily found in the literature (see Peters [14] and Warnatz [15]).

5 Conclusions

In this work we show the development of a reduced kinetic mechanism for hydrogen
diffusion flames, considering steady-state and partial equilibrium assumptions. The
main advantage of the strategy is the decrease of the work needed to solve the resultant
system of chemical equations, by one order of magnitude for the hydrogen.

The main contribution of the present work is the split of the mixture fraction into
three parts to obtain the intermediate species for a hydrogen jet diffusion flame, result-
ing in a system of three differential equations. These equations were solved for a
50–50 % H2 − N2 diffusion flame, giving consistent results in comparison with the
experiment.
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